以下是使用Python和Keras库来解决
Kaggle Digit Recognizer比赛的代码示例:
首先,导入必要的库:
im
port pandas as pd
im
port numpy as np
from keras.models im
port Sequential
from keras.layers im
port Dense, Dro
pout, Flatten, Conv2D, MaxPool2D
from keras.optimizers im
port RMSprop
from keras.preprocessing.image im
port ImageDataGenerator
from sklearn.model_selection im
port train_test_split
然后,读取和处理训练数据和测试数据:
train_data = pd.read_csv(
'train.csv
')
test_data = pd.read_csv(
'test.csv
')
# 将数据分成输入和输出
X_train = train_data.drop([
'label
'], axis=1)
y_train = train_data[
'label
']
# 将输入数据重塑为28x28像素
X_train = X_train.values.reshape(-1, 28, 28, 1)
test_data = test_data.values.reshape(-1, 28, 28, 1)
# 将像素值转换为浮点数并归一化
X_train = X_train.astype(
'float32
') / 255
test_data = test_data.astype(
'float32
') / 255
# 将输出数据转换为独热编码
y_train = pd.get_dummies(y_train).values
接着,将数据分成训练集和验证集,设置数据增强器并构建卷积神经网络模型:
# 将数据分成训练集和验证集
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.1)
# 设置数据增强器
datagen = ImageDataGenerator(
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1)
# 构建卷积神经网络模型
model = Sequential()
model.add(Conv2D(filters=32, kernel_size=(5,5), padding=
'Same
', activation=
'relu
', input_shape=(28,28,1)))
model.add(Conv2D(filters=32, kernel_size=(5,5), padding=
'Same
', activation=
'relu
'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Flatten())
model.add(Dense(256, activation="relu"))
model.add(Dropout(0.5))
model.add(Dense(10, activation="softmax"))
# 定义优化器和损失函数
optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"])
最后,使用训练集和验证集来训练和评估模型,并对测试数据进行预测:
# 训练模型
history = model.fit_generator(datagen.flow(X_train, y_train, batch_size=64),
epochs=30,
validation_data=(X_val, y_val),
verbose=2)
# 在验证集上评估模型
score = model.e
valuate(X_val, y_val, verbose=0)
print("Validation loss:", score[0])
print("Validation accuracy:", score[1])
# 对测试数据进行预测
predictions = model.predict(test_data)